Web Application Vulnerabilities

Web application vulnerabilities provide the potential for an authorized party to gain access to critical and proprietary information, use resources inappropriately,interrupt business or commit fraud. The key to a successful program is an integrated,multilayer approach to vulnerability assessment and intrusion detection.

Below are some of the highlighted emerging threats specific to Web application security

Administrative Interface Access: In this case the attacker main objective is to gain access to the administrator privileged of a target application server.The techniques an attacker used in this process includes SQL-Injection,Cross Site Scripting,Parameter tampering etc. to achieve its goal.Once achieved it leads to access the entire application and other parts of the network.

For example, consider a sales reporting application that provides an administrative interface. The administrative interface is accessible through HTTP and does not limit unsuccessful login attempts .If an intruder employs a brute force attack on the password field, it is only a matter until the proper administrator's password is found. If found the attacker will employ unauthorized access to the entire application and also gain access to the network.

Prevention for Administrative Interface Access:

The foremost thing is that the web application should be build in such a way that must include a secure administrative interface from which all administrative functions are accessible to only the administrator. Necessary testings should be made in order to checkout that except administrator no one else can

.

A) Configure and change the security policy

B) Configure and change administrative user authentication information

C) Configure and change remote administration settings.

D) Configure and change date and time of the system

SQL Injection: This is however one of the most powerful technique through which the attacker used to pass SQL Commands through a web application in order to be executed by a back end database. Normally SQL injections are applied on form fields and query strings which pertains to direct interaction with the database. Usually programmers often chain together SQL commands with user- provided parameters and therefore embed SQL commands inside these parameters which gives a great advantage to the attacker. The result is that attacker can execute possible SQL queries and / or commands at the back end database server through the Web Application.

 For example, consider a login form in which

1. A user enters Username and Password.

2. Web form opens a connection to the database

3. Web form builds a dynamic Sql query for e.g. Select * from login where username='username' and Password ='password'

4. Web forms perform the Sql query over the open connection.

5. If there any rows then the user is authenticated.

The vulnerability would be if the following string was entered into the username/password fields:' ' or ''='. The SQL statement would then be executed as:

SELECT * FROM tblUsers WHERE Username=' ' or ''='' and Password = ' ' or ''=''

This query will return all records from tblUsers, and the script will proceed to log the user in as the first user identified by the first record in the table.

Another example is the about the query string where the values are displayed in the address bar. For e.g

http://www.example.com/Article.asp?ID=1100 shows the dynamic content for the article.A malicious user may substitute the value valid Article ID for an unauthorized Sql command by passing into the ID something like 0 or 1=1(i.e., http://www.example.com/Article.asp?ID=0 or 1=1)

Prevention for SqlInjection:

The common most technique of preventing SqlInjection attack is to check out that all the form fields does not accept any meta characters (such as ; or '). To further reduce SqlInjection be sure to remove any technical information from client-delivered error messages.Usually error messages reveal technical details that can enable an attacker to reveal vulnerable entry points. This includes any custom error messages your application generates as well as IIS generated errors.You can implement this by disabling detailed error messages in IIS and by creating non-technical custom error pages.To reduce SqlInjection in query string the value passed through the query string must be validated properly against the database.

Cross Site Scripting or XSS Cross-site scripting vulnerabilities occur when an attacker uses a web application to send malicious code,generally in the form of a script, to a different end user. The end user's browser has no way to know that the script should not be trusted, and will execute the script. The malicious script can access any cookies,session token's or other sensitive information retained by your browser and used with that site. This script can even rewrite the content of the HTML page. XSS attacks usually comes in the form of embedded javascript,Vb Script,ActiveX,Shockwave,Flash and many more. All web servers,application servers and web application environments are susceptible to cross site scripting.

For example, an attacker might place a hyperlink with an embedded malicious script into an online discussion forum. The purpose of the malicious script is to attack other forum users who happens to click the hyper link. For example it could copy user cookies and then send those cookies to the attacker as the cookies contain valuable information about the user.

Prevention of Cross-Site Scripting:

The best way to protect a web application from XSS attacks is to filter out the series of special characters as these characters can enable any scripts to be generated withing an HTML stream. Special prevention should be taken in the URL which contains the ?character. So the easiest way of prevention is that we should give permission so that the user is not able to use any form of HTML in their data.

Buffer Overflows: Buffer overflow attacks involve sending long input stream to the attacked server, causing the server to overflow parts of the memory and either crash the system.The result is full server compromise.

For example the user is required to enter a phone number in the application. The programmer might assume that users will not enter a phone number longer than 10 digits,based on it the programmer might write the code to allocate a 15-characters buffer to contain the returned input. But what would happen if the user makes an input of 1000 characters long. Obviously the remaining characters except the first fifteen characters will run over important parts of the application and could cause the system to crash.

Prevention for Buffer Overflow:

Buffer overflow attacks are prevented by enforcing boundary checking on input received from users. Each input should be carefully checked by the server to match the size expected. Inputs that exceed the allocated buffer size should be blocked.

Cookie Poisoning Attack: This involve the modification of the contents of a cookie as cookie contains personal information in web user's computer in order to bypass security mechanisms. Using this technique attacker's can gain unauthorized information about another user and steal his identity.An attacker can examine a cookie to determine its purpose and edit it so that it helps them get user information from a web site that sent the cookie.

For example, consider the following scenario:

Get /store/buy.asp?checkout=yes HTTP/1.0

Host:www.onlineshop.com

Accept:*/*

Referrer:http://www.onlineshop.com/showprods.asp

Cookie:SESSIONID=570321ASDD23SA2321;BasketSize=3; Iteml=2892;

Item2=3210;Item3=9942;TotalPrice=16044;

In this example, the dynamic page requested by the browser is called buy.asp and the browser sends the parameter checkout to the web server with a yes value indicating that the user wants to finalize his purchase. The request includes a cookie that contains the following parameters:SESSIONID, which is a unique identification string that associates the user with the site BasketSize, the price of each item and the TotalPrice.When executed by the web server buy.asp retrieves the cookie from the user analyses the cookie parameter and charges the user account. Now if this cookie is trapped by an attacker he will change the parameters of the cookie in order to get a special discount on the product.

Prevention for Cookie Poisoning:

To guard against cookie poisoning,web sites that use them should protect cookies through encryption before they are sent to a user's computer.When cookies pass through the platform, sensitive information is encrypted.Adigital signature is created that is used to validate the content in all further communications between the sender and the recipient. If the content is tampered , the signature will no longer match the content and will be refused access by the server.

Brute Force Attack: It is a common technique in which an attacker used to obtain the user 's authentication credentials. Normally authentication is the process of determining if a user is who he/she claims to be. It is commonly performed through the usage of usernames and passwords. Using this brute force attack an attacker attempts every possible combination of the accepted character set in order to find a specific combination that gains access to the authorized area.

Consider the following form:

Please Login Here

Username

Password

.

Attacker can use brute force applications such as password guessing tools and scripts in order to try all the combinations of well known usernames and passwords. Such applications may use default password databases that contain commonly used passwords or they may try all combinations of the accepted characters set in the password field.

An example of tampering SessionID using brute force attack.

http://greetings.card.com/view/9BA54003218827622
This is an example of greeting card site that has a unique session ID for each greeting card. Using brute force attack an attacker can try several combinations of this sessionID embedded in the URL in order to view all the cards which are not authorized to view.

Prevention for Brute Force Attack.

The simplest thing to prevent brute force attacks from succeeding is to choose truly random passwords that are not based on words in any language and are longer than 8 characters. The longer the password the longer it would take a brute force tool to find out. The second most thing is to change your passwords frequently. If someone does guess your password you can limit how long they have access to your account by frequently changing your password.

Denial of Service (DoS):Denial of Service(DoS) attacks are commonly used to disturb the normal operation of applications. DoS attacks take advantage of a weakness in the system or application and cause it to crash or stop responding. In most cases a DoS attack floods the victim server with network traffic. This can be achieved by either overloading the ability of the victim server to handle incoming traffic or by sending requests that causes the server to hang or crash down.

For example, imagine an attacker who creates a program that calls a online pizza store. If the program repeats this task continuously,it prevents customers from ordering pizza because the telephone line is busy.This demonstrates the consumption of resources. Resource consumption is a technique for performing DoS attack. The attacker tries to identify operations that are implemented in a poor manner and consume relatively vast resources. The attacker repeats these operations until the server is no longer capable of serving other users. The affected resources can be the server's bandwidth , memory,disk space or CPU time.

Prevention for Denial of Service (DoS):

To prevent from DoS you should limit the resources allocated to any user to a bare minimum. For authenticated users it is possible to establish quotas so that you can limit the amount of load a particular user can put on your system.You might consider only handling one request per user at a time by synchronizing on the user's session. For unauthenticated users you should avoid any unnecessary access to database or other expensive resources.You should also check your error handling scheme to ensure that an error cannot affect the overall operation of the application.

Session-Hijacking: A session is a series of interactions between two communication end points that occurs during the span of a single connection.When a user logs into an application a session is created on the server in order to maintain the state for other requests originating from the same user. The session is kept alive on the server as long as the user is logged on to the system. The session is destroyed when the user logs-out from the system or after a predefined period of inactivity. Session ID's are normally found in URL,cookies and hidden fields of a web page.

Session hijacking involves an attacker using captured,brute forced session Ids to seize control of a user's session while that session is still in progress.After successful hijacking a session, the attacker gains complete access to all the user's data, and is permitted to perform operations instead of the user whose session was hijacked.

Primary techniques for session hijacking includes:

1.Brute force-the attacker tries multiple Ids until successful

2.Calculate-in many cases, Ids are generated in a non-random manner and can be calculated.

3.Steal- using different types of techniques the attacker can acquire the SessionID.

In brute force attacks the attacker can try many Ids.For example, take a look at the following list of URLs, in which an attacker tries to guess the sessionID:

http://www.somesite.com/view/VW30422101518909

http://www.somesite.com/view/VW30422101520803

http://www.somesite.com/view/VW30422101522507
Session IDs can be stolen using variety of ways: sniffing network traffic, using trojans on client PCs, using the HTTP referrer header where the ID is stored in the query string parameters and using cross-site scripting attacks.

In a referrer attack, the attacker provokes a user to click on a link to another site

Get /index.html HTTP /1.0

Host: www.hostile.com

Referrer: www.mywebmail.com/viewmsg.asp?msgid=438933&SID=2346X32VA92
The browser sends the referrer URL containing the session ID to the attacker's site-www.hostile.com, and the attacker now has the session ID of the user.

Session Ids can also be stolen using cross-site scripting.The user executes a malicious script that redirects the user's information to the attacker.

Prevention for Session-Hijacking:

Web applications must ignore any session ID provided by the user's browser at login and must always generate a new session to which the user will log in if successful authenticated.

Session destruction, either due to logging out or timeout must take place on the server not just on the browser(deleting the session cookie).

The user must have an option to log out thereby destroying not just the current session , but also any previous sessions that may still exist.

Applying session timeout for an application enables the page to expire upon non activation of the page for a certain period of time

Forceful Browsing: Web servers basic role is to serve files. Web server provides two main security mechanisms to prevent users from accessing unauthorized files:the root directory and access control lists. The root directory limits user's access to a specific directory within the web server's file system. All files placed in the root directory and its sub-directories are accessible to users. Using access control lists administrator's can determine whether a file can be viewed or executed by users as well as other access rights.Apart from having high security standards attacker's enforces forceful browsing to gain access to restricted parts in the Web server directory. This kind of attack occurs when the attacker's “forces” a URL by accessing it directly instead of following links.

For example, consider a registration page that includes an HTML comment mentioning a file named private/customer.txt. The file customer.txt was supposed to be unreferenced file.However by typing http://www.acme-hackme.com/_private /customer.txt, an attacker can retrieve the customer.txt file and view its contents.

Appending “~”,”bak” or “old” to Html or CGI names may retrieve an older version of the source code.This is dangerous as many developers embed material into development code that they later remove. For example, www.xxx.com/ cgi-bin/admin.jsp~ returns the admin.jsp source code.

Forceful browsing is usually combined with brute force techniques to gather information by attempting to access as many URLs as possible to enumerate directories and files on a server.Attackers may check for all variations of commonly existing files. A password file search would encompass files including passwd.txt, password.htm, password.dat and other variations

Prevention for Forceful Browsing:

Forceful browsing can be prevented by removing all sample files from your web server.Ensure that any unwanted or unused files are removed.Don't rely on files not be referenced to protect your site from mis-use.

By: Srikant Das

srikantd@mindfiresolutions.com

References:

http://www.imperva.com/application_defense_center

http://ww.technical-info.net

